No. of Recommendations: 0
I was going to say Krakatoa.
In the year following the eruption, average global temperatures fell by as much as 1.2 °C (2.2 °F). Weather patterns continued to be chaotic for years, and temperatures did not return to normal until 1888. The eruption injected an unusually large amount of sulfur dioxide (SO2) gas high into the stratosphere, which was subsequently transported by high-level winds all over the planet. This led to a global increase in sulfurous acid (H2SO3) concentration in high-level cirrus clouds. The resulting increase in cloud reflectivity (or albedo) would reflect more incoming light from the sun than usual, and cool the entire planet until the suspended sulfur fell to the ground as acid precipitation.
http://en.wikipedia.org/wiki/1883_eruption_of_Krakatoa#Globa...

Curiously, when you look at NOAA data you don't see a 1.2°C drop in the 1880's. I wonder why that is.
ftp://ftp.ncdc.noaa.gov/pub/data/anomalies/monthly.land_ocea...
Print the post  

Announcements

When Life Gives You Lemons
We all have had hardships and made poor decisions. The important thing is how we respond and grow. Read the story of a Fool who started from nothing, and looks to gain everything.
Contact Us
Contact Customer Service and other Fool departments here.
Work for Fools?
Winner of the Washingtonian great places to work, and Glassdoor #1 Company to Work For 2015! Have access to all of TMF's online and email products for FREE, and be paid for your contributions to TMF! Click the link and start your Fool career.